Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-lodo-1,3-dimethoxybenzene

Li-Ping Xue* and Jian-Hua Qin

College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
Correspondence e-mail: Ipxue@163.com

Received 12 June 2009; accepted 30 June 2009
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.019 ; w R$ factor $=0.046$; data-to-parameter ratio $=15.5$.

Crystals of the title compound, $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{IO}_{2}$, were obtained from a dimethyl sulfoxide solution of 2,6 -dimethoxybenzoic acid and iodobenzene diacetate under a nitrogen atmosphere at 353 K . In the crystal structure, molecules are linked by weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, generating interpenetrating onedimensional chains of perpendicularly oriented molecules extending along [011] and [0 $\overline{1} 1$]. Chains are also formed through non-bonding $\mathrm{C}-\mathrm{I} \cdots \pi$ contacts extending in the same directions, projecting a zigzag motif in view down [100]. The $\mathrm{I} \cdots C g$ distance is $3.695(2) \AA$ and the $\mathrm{C}-\mathrm{I} \cdots C g$ angle is $164.17(14)^{\circ}$. The molecular symmetry m coincides with the mirror plane of the space group $C m c 2_{1}$, resulting in a halfmolecule in the asymmetric unit ($Z^{\prime}=\frac{1}{2}$).

Related literature

For the development of a decarboxylative palladation reaction and its use in a Heck-type olefination of arene carboxylates, see: Myers et al. (2002). For a novel system for decarboxylative bromination, see: Telvekar \& Chettiar (2007). For related structures, see: Kirsop et al. (2004); Ali et al. (2008). For a database study of C -halogen $-\pi$ interactions and their influence on molecular conformation and crystal packing, see: Prasanna \& Guru Row (2000). For structure validation in chemical crystallography, see: Spek (2009).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{IO}_{2}$
$M_{r}=264.05$
Orthorhombic, Cmc_{1}
$a=12.5767$ (13) \AA
$b=8.6788$ (8) A
$c=8.4338$ (9) \AA
$V=920.55(16) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=3.43 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.23 \times 0.19 \times 0.16 \mathrm{~mm}$

Data collection

Bruker P4 diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1997)
$T_{\text {min }}=0.500, T_{\text {max }}=0.616$
(expected range $=0.469-0.578)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.046$
$S=1.12$
850 reflections
2731 measured reflections 850 independent reflections 840 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$

55 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=1.02$ e \AA^{-3}
$\Delta \rho_{\min }=-0.84 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), 362 Friedel pairs
1 restraint

Flack parameter: -0.05 (4)

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots C g 1^{\mathrm{i}}$	0.93	2.94	$3.824(9)$	159

Symmetry code: (i) $-x, y+1, z . C g 1$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 4 / \mathrm{C} 3 A / \mathrm{C} 2 A$ ring.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank Luoyang Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2185).

References

Ali, Q., Shah, M. R. \& VanDerveer, D. (2008). Acta Cryst. E64, o910. Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kirsop, P., Storey, J. M. D. \& Harrison, W. T. A. (2004). Acta Cryst. E60, o1147o1148.
Myers, A. G., Tanaka, D. \& Mannion, M. R. (2002). J. Am. Chem. Soc. 124, 11250-11251.
Prasanna, M. D. \& Guru Row, T. N. (2000). Cryst. Eng. 3, 135-154.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Telvekar, V. N. \& Chettiar, S. N. (2007). Tetrahedron Lett. 48, 4529-4532.

supplementary materials

Acta Cryst. (2009). E65, o1790 [doi:10.1107/S1600536809025264]

2-Iodo-1,3-dimethoxybenzene

L.-P. Xue and J.-H. Qin

Comment

Decarboxylation arene carboxylic acids accompanied by simultaneous replacement with different function groups is a useful reaction in organic chemistry (Myers et al., 2002;). Especially iodobenzene derivatives have been found widespread application in organic synthesis because of their selectivity and simplicity of use (Telvekar \& Chettiar, 2007). Recently, we found iodobenzene derivatives could be formed by arene carboxylic acid with reaction of $\mathrm{PhI}(\mathrm{OAc})_{2}$. As part of our studies, we report herein the synthesis and crystal structure of the title compound (Fig. 1). The asymmetric unit of the cell contains a half-molecule $\left(Z^{\prime}=1 / 2\right)$, which is completed by the space group symmetry m. Atoms I1, C4, C1, H1A occupy the special positions in the mirror plane m. The bond length of C4-I1 is $2.090(5) \AA$. The two I-C-C angles, related by mirror symmetry, are 119.5 (2) ${ }^{\circ}$.

The molecules in the crystal structure are linked by weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions to generate a one-dimensional supramolecular structure (Fig. 2). The bond length of $\mathrm{C} 1 — \mathrm{H} 1 \mathrm{~A} \cdots C g 1$ is 3.824 (9) \AA (Table. 1), $C g 1$ is the centroid of the C1 C2 C3 C4 C3A C2A ring. In a CSD database study, Prasanna \& Guru Row (2000) reported about C-halogen $\cdots \pi$ interactions and their influence on molecular conformation and crystal packing. The authors found 171 intermolecular $\mathrm{C}-\mathrm{I} \cdots \pi$ contacts in the literature, with a mean $\mathrm{I} \cdots \mathrm{C}_{(\pi \text {-system })}$ atomic distance of $3.698(13) \AA$. In the course of the structure validation (Spek, 2009) of the title compound, a similar geometric parameter ($\mathrm{I} 1 \cdots \mathrm{Cg} 1^{\mathrm{ii}}=3.695$ (2) \AA) has been found. The $\mathrm{C} 4 \cdots \mathrm{Cg} 1^{\mathrm{ii}}$ distance amounts to 5.735 (5) \AA, and the angle $\mathrm{C} 4-\mathrm{I} 1 \cdots \mathrm{Cg}^{\text {ii }}$ is 164.17 (14) \AA. Symmetry code: $(\mathrm{ii}=-x, y+2, z-1)$. The $\mathrm{C} 4-\mathrm{H} 1 \mathrm{~A} \cdots \pi$ and nonbonding $\mathrm{C} 4-\mathrm{I} 1 \cdots \pi$ contacts generate interpenetrating one-dimensional chains of perpendicularly oriented molecules extending along the $\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$ and $\left[\begin{array}{lll}0 & \overline{1} & 1\end{array}\right]$ directions, projecting a zigzag motif in view down [1000 (Fig.3).

Experimental

The title compound was obtained from a mixture of 2,6-Dimethoxybenzoic acid (36 mg) with Iodobenzene diacetate (77 mg) in DMSO (2 ml) under a nitrogen atmosphere at 353 K for 24 h . The crude product was isolated and purified by silica gel column chromatography. Colorless prism-shaped crystals of (I) suitable for X-ray diffraction were grown by slow evaporation of a dichloromethane solution at room temperature.

Refinement

All hydrogen atoms were positioned geometrically and treated as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA(\mathrm{CH})$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and with $\mathrm{C}-\mathrm{H}=0.96 \AA(\mathrm{CH} 3)$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

supplementary materials

Figures

Fig. 1. The molecular structure of the title compound. Symmetry code: (2-x,y,z). Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.

Fig. 2. A view of the one-dimensional weak $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts in the title compound.

Fig. 3. A view down the a axis showing a section of the zigzag motif of the title compound.

2-Iodo-1,3-dimethoxybenzene

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{IO}_{2}$
$M_{r}=264.05$
Orthorhombic, Cmc_{2}
Hall symbol: C 2c -2
$a=12.5767$ (13) \AA
$b=8.6788(8) \AA$
$c=8.4338(9) \AA$
$V=920.55(16) \AA^{3}$
$Z=4$

Data collection

Bruker P4
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=296 \mathrm{~K}$
ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1997)
$T_{\text {min }}=0.500, T_{\text {max }}=0.616$
2731 measured reflections
$F_{000}=504$
$D_{\mathrm{x}}=1.905 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1365 reflections
$\theta=3.7-27.5^{\circ}$
$\mu=3.43 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism, white
$0.23 \times 0.19 \times 0.16 \mathrm{~mm}$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.046$
$S=1.12$
850 reflections
55 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0245 P)^{2}+0.6278 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=1.02 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.84 \mathrm{e} \AA^{-3}$
Extinction correction: none Absolute structure: Flack (1983), 362 Friedel pairs Flack parameter: -0.05 (4)

Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
I1	1.0000	$0.95668(3)$	$0.54168(9)$	$0.04533(12)$
O1	$0.8137(2)$	$0.7922(4)$	$0.7118(3)$	$0.0562(8)$
C1	1.0000	$0.5564(7)$	$0.9408(11)$	$0.073(2)$
H1A	1.0000	0.4784	1.0163	0.088^{*}
C2	$0.9046(4)$	$0.6130(5)$	$0.8860(6)$	$0.0637(12)$
H2A	0.8409	0.5739	0.9250	0.076^{*}
C3	$0.9038(3)$	$0.7287(4)$	$0.7725(4)$	$0.0432(9)$
C4	1.0000	$0.7859(5)$	$0.7165(6)$	$0.0374(11)$
C5	$0.7137(4)$	$0.7340(7)$	$0.7685(7)$	$0.0776(16)$
H5A	0.6566	0.7868	0.7160	0.116^{*}
H5B	0.7087	0.7505	0.8808	0.116^{*}
H5C	0.7091	0.6256	0.7464	0.116^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.04655(17)$	$0.05029(18)$	$0.0391(2)$	0.000	0.000	$0.01194(17)$
O1	$0.0454(16)$	$0.0700(18)$	$0.0531(19)$	$-0.0124(14)$	$0.0033(14)$	$0.0111(15)$
C1	$0.099(6)$	$0.052(4)$	$0.068(5)$	0.000	0.000	$0.030(3)$
C2	$0.085(3)$	$0.051(2)$	$0.055(3)$	$-0.016(2)$	$0.009(2)$	$0.014(2)$
C3	$0.058(2)$	$0.0384(16)$	$0.033(2)$	$-0.0055(16)$	$0.0005(16)$	$-0.0015(15)$
C4	$0.055(3)$	$0.030(2)$	$0.027(3)$	0.000	0.000	$-0.0008(19)$
C5	$0.056(3)$	$0.086(4)$	$0.091(5)$	$-0.023(3)$	$0.010(3)$	$0.007(3)$

Geometric parameters ($\AA,^{\circ}$)

$\mathrm{I} 1-\mathrm{C} 4$	$2.090(5)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300
$\mathrm{O} 1-\mathrm{C} 3$	$1.359(5)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.391(5)$

supplementary materials

$\mathrm{O} 1-\mathrm{C} 5$	$1.437(6)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.376(6)$
$\mathrm{C} 1-\mathrm{C} 2^{\mathrm{i}}$	$1.376(6)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	$1.388(5)$
$\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 5$	$117.5(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 2 \mathrm{i}$	$121.3(6)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	119.3
$\mathrm{C} 2{ }^{\mathrm{i}}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	119.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$119.8(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.1
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.1
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	$124.0(4)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	$116.9(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$119.1(4)$
$\mathrm{C} 2{ }^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.5(11)$
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	$-0.7(6)$
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	$179.9(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1$	$-179.7(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.3(7)$

$\mathrm{C} 4-\mathrm{C} 3^{\text {i }}$	1.391 (5)
C5-H5A	0.9600
C5-H5B	0.9600
C5-H5C	0.9600
C3 ${ }^{\text {i }}$ - $\mathrm{C} 4-\mathrm{C} 3$	121.0 (5)
$\mathrm{C} 3{ }^{\text {i }}$ - $\mathrm{C} 4-\mathrm{I} 1$	119.5 (2)
C3-C4-I1	119.5 (2)
O1-C5-H5A	109.5
O1-C5-H5B	109.5
H5A-C5-H5B	109.5
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	109.5
H5A-C5-H5C	109.5
H5B-C5-H5C	109.5
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 3^{\text {i }}$	179.6 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 3^{\text {i }}$	0.1 (7)
O1-C3-C4-I1	-1.9 (5)
C2-C3-C4-I1	178.6 (3)

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Cg} 1^{\mathrm{ii}}$	0.93	2.94	$3.824(9)$	159
Symmery				

Fig. 1

supplementary materials

Fig. 2

Fig. 3

